Click Chemistry: What it means for biologists

A few months ago I read a very nice blog post from our friends at TriLink Biotechnologies giving the chemist’s perspective on the excitement surrounding “Click Chemistry” and how it can be used to make non-natural, yet functional DNA and RNA. Some of the terms in that post such as 1,3-dipolar cycloaddition are oriented more towards chemists. Here’s a more biologist-friendly explanation of Click Chemistry: [Read more…]

mRNA delivery tools

Direct delivery of RNA sequences to a cell circumvents many drawbacks inherent to plasmid or viral DNA. This innocuous strategy reveals being as efficient as viruses when it comes to conveying and expressing nucleic acid sequences in non-dividing cells, for it does not rely on nuclear entry, precluding any mutagenic events by the same token.

Once efficiently engineered to escape their automatic and swift destruction in most biological environments, RNA molecules become remarkably stable and turn out to be extremely reliable for in vivo applications. In line with our Nucleic acid delivery tools presentation series, let’s focus here on RNA delivery to the cell. [Read more…]

3 good reasons to select capped polyadenylated mRNA expressing factors for iPSC generation

mRNAs are expression factors that mimic fully processed mRNA. Being the substrate for translation by ribosomes, mRNA expression factors are often preferred over viral vectors for cell reprogramming and iPS cell generation because of the absent risk of integration into the genome. Such RNA-induced pluripotent stem cells (RiPSCs described in 2010 by Warren et al.) are becoming more and more popular. 3 reasons might illustrate RiPSCs’ attractivty.

[Read more…]