CRISPR genome editing: which cell line to choose?

Many labs have adopted the CRISPR genome editing technology to make knock-out and knock-in cell lines.

This technology produces first a targeted break in genomic DNA, which can then be exploited to produce cell lines with genes knocked out or where a donor vector has been used to introduce new genetic elements (point mutants, fluorescent tags, antibiotic resistance cassettes, etc.). Essentially any desired modification to the cells genome can be made. In setting up these genome editing projects there are many choices to be made including vector for the Cas9 protein and for the sgRNAs. Perhaps the most difficult choice, however, can be which cell line to use. Even the most affordable stable genome editing cell line development services can come with a significant cost, so choosing the right cell line at the beginning is crucial. Here we explain some of the choices researchers have in setting up their CRISPR genome editing projects and give our advice for cell line selection.

[Read more…]

CRISPR-Cas or TALEN genome editing – which one to choose?

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated)  and Transcription Activator-Like Effector Nuclease (TALEN) are endonuclease based technologies aimed at developing targeted genome editing technologies.

CRISPR and TALEN provide Scientists with unique discovery tools for pathophysiology or genotype-phenotype studies by creating cellular models with gene knock-out, knock-in or tagging, promoter swapping, nucleotide substitution, protein truncation, reading frame disruption, modification of regulation by miRNA, genetic defect corrections…But, which one is the best for your application?

[Read more…]

“CRISPR-Cas9 Specificity: Taming Off-target Mutagenesis” Technical bulletin

The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)-Cas (CRISPR-associated) (CRISPR-Cas) system has become trendy as it is suitable for numerous applications such as gene knockouts, genome-engineering, to name but a few. In a recent Technical Bulletin, Ed Davis describes the mechanism of CRISPR-Cas for genome editing and how the recent experimental improvements improve CRISPR-Cas9 specificity while reducing off-target effects.

[Read more…]